Received 26 October 2006

Accepted 30 October 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

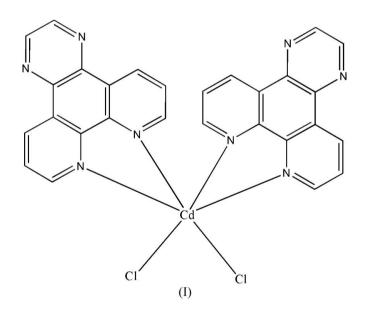
Chuan-Bi Li,* Wei Fang, En-Jie Dong, Bo Liu and Yan-Wei Li

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: chuanbl@gmail.com

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.025 wR factor = 0.062 Data-to-parameter ratio = 13.5


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichlorobis(pyrazino[2,3-*f*][1,10]phenanthroline- $\kappa^2 N, N'$)cadmium(II)

In the title compound, $[CdCl_2(C_{14}H_8N_4)_2]$, the central Cd^{II} ion is six-coordinate in an octahedral geometry, coordinated by two Cl^- ions and four N atoms from two chelating pyrazino[2,3-*f*][1,10]phenanthroline ligands. The metal atom lies on a twofold rotation axis.

Comment

The 1,10-phenanthroline ligand has been widely used for the synthesis of coordination compounds; these are sometimes assembled into supramolecular architectures through aromatic π - π interactions (Chen & Liu, 2002). Pyrazino[2,3-f][1,10]phenanthroline (PyPhen) is a similarly useful ligand, and several complexes have been reported (Che *et al.*, 2006). The title compound, [CdCl₂(PyPhen)₂]_n (I), has the metal lying on a twofold rotation axis in an octahedral geometry (Fig. 1). It is coordinated by two Cl⁻ ions and four N atoms from two PyPhen ligands.

There are π - π stacking interactions (π - π stacking distance = 3.363 Å), giving rise to a supramolecular structure (Fig. 2).

Experimental

Pyrazino[2,3-f][1,10]phenanthroline was synthesized according to the literature method of Dickeson & Summers (1970). To a solution of CdCl₂ (0.092 g, 0.5 mmol) and the ligand (0.045 g, 0.2 mmol) in 30 ml water was added aqueous sodium hydroxide to a pH of about 7.5. The mixture was placed in a stainless steel, Teflon-lined reaction vessel (40 ml) and heated to 453 K for 4 d. Dark-brown crystals were obtained (65% yield on Cd).

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Crystal data

 $\begin{bmatrix} CdCl_2(C_{28}H_{16}N_8) \end{bmatrix} \\ M_r = 647.80 \\ Monoclinic, C2/c \\ a = 8.4987 (11) Å \\ b = 12.5070 (17) Å \\ c = 22.768 (3) Å \\ \beta = 95.267 (2)^{\circ} \\ V = 2409.8 (6) Å^3 \end{bmatrix}$

Data collection

Bruker APEX CCD area-detector
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.751, T_{\max} = 0.828$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.031P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.025$	+ 2.0151P]
$wR(F^2) = 0.062$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
2382 reflections	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
177 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Z = 4

 $D_x = 1.786 \text{ Mg m}^-$

Mo $K\alpha$ radiation

Block, dark brown

 $0.38 \times 0.21 \times 0.16 \text{ mm}$

6690 measured reflections 2382 independent reflections

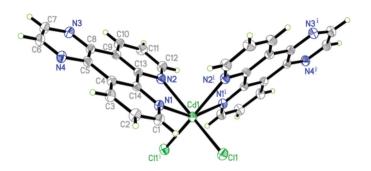
2170 reflections with $I > 2\sigma(I)$

 $\mu = 1.17 \text{ mm}^{-1}$

T = 292 (2) K

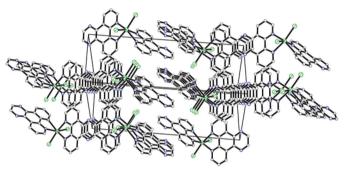
 $R_{\rm int} = 0.019$

 $\theta_{\rm max} = 26.0^\circ$


Table 1

Selected geometric parameters (Å, °).

Cd1-N1	2.3805 (18)	Cd1-Cl1	2.5382 (7)
Cd1-N2	2.425 (2)		
N1-Cd1-N2	68.85 (6)	N2-Cd1-Cl1	162.22 (5)
N1-Cd1-Cl1	94.44 (5)		


All H atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXTL*.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, y, $\frac{1}{2} - z$.]

Figure 2

A view of the layer structure arising from π - π interactions.

The authors thank Jilin Normal University for supporting this work.

References

- Bruker (2002). *SMART* (Version 5.611), *SAINT* (Version 6.0), *SADABS* (Version 2.03) and *SHELXTL* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Che, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1370-m1372.
- Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.
- Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023-1027.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.